The Power of Character N-grams in Native Language Identification

نویسندگان

  • Artur Kulmizev
  • Bo Blankers
  • Johannes Bjerva
  • Malvina Nissim
  • Gertjan van Noord
  • Barbara Plank
  • Martijn Wieling
چکیده

In this paper, we explore the performance of a linear SVM trained on languageindependent character features for the NLI Shared Task 2017. Our basic system (GRONINGEN) achieves the best performance (87.56 F1-score) on the evaluation set using only 1-9 character n-grams as features. We compare this against several ensemble and meta-classifiers in order to examine how the linear system fares when combined with other, especially non-linear classifiers. Special emphasis is placed on the topic bias that exists by virtue of the assessment essay prompt distribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Native Language Identification using Phonetic Algorithms

In this paper, we discuss the results of the IUCL system in the NLI Shared Task 2017. For our system, we explore a variety of phonetic algorithms to generate features for Native Language Identification. These features are contrasted with one of the most successful type of features in NLI, character n-grams. We find that although phonetic features do not perform as well as character n-grams alon...

متن کامل

CIC-FBK Approach to Native Language Identification

We present the CIC-FBK system, which took part in the Native Language Identification (NLI) Shared Task 2017. Our approach combines features commonly used in previous NLI research, i.e., word n-grams, lemma n-grams, part-of-speech n-grams, and function words, with recently introduced character n-grams from misspelled words, and features that are novel in this task, such as typed character n-gram...

متن کامل

A Shallow Neural Network for Native Language Identification with Character N-grams

This paper describes the systems submitted by GadjahMada team to the Native Language Identification (NLI) Shared Task 2017. Our models used a continuous representation of character n-grams which are learned jointly with feed-forward neural network classifier. Character n-grams have been proved to be effective for stylebased identification tasks including NLI. Results on the test set demonstrate...

متن کامل

Native Language Identification Using a Mixture of Character and Word N-grams

Native language identification (NLI) is the task of determining an author’s native language, based on a piece of his/her writing in a second language. In recent years, NLI has received much attention due to its challenging nature and its applications in language pedagogy and forensic linguistics. We participated in the NLI Shared Task 2017 under the name UT-DSP. In our effort to implement a met...

متن کامل

Native Language Identification using large scale lexical features

This paper describes an effort to perform Native Language Identification (NLI) using machine learning on a large amount of lexical features. The features were collected from sequences and collocations of bare word forms, suffixes and character n-grams amounting to a feature set of several hundred thousand features. These features were used to train a linear Support Vector Machine (SVM) classifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017